#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
#定义两个placeholder,None=100,28*28=784,即100行,784列
x = tf.placeholder(tf.float32,[None,784])
#0-9个输出标签
y = tf.placeholder(tf.float32,[None,10])
#创建一个简单的神经网络,只有输入层和输出层
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([1,10]))
#softmax函数转化为概率值
prediction = tf.nn.softmax(tf.matmul(x,W)+b)
#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#tf.equal()比较函数大小是否相同,相同为True,不同为false;tf.argmax():求y=1在哪个位置,求概率最大在哪个位置
#argmax返回一维张量中最大的值所在的位置,结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#求准确率
#cast转化类型,将布尔型转化为32位浮点型,True=1.0,False=0.0;再求平均值
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
#将所有图片训练21次
for epoch in range(21):
#训练一次所有的图片
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
#feed_dict传入训练集的图片和标签
sess.run(train_step,feed_dict={ x:batch_xs,y:batch_ys})
#传入测试集的图片和标签
acc = sess.run(accuracy,feed_dict={ x:mnist.test.images,y:mnist.test.labels})
print("Iter"+str(epoch)+",Testing Accuracy:"+str(acc))